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From analytical investigations it is well known that the roll-up of an inviscid plane
vortex sheet which separates at the edge of a body is a self-similar process which can be
described by scaling laws. Unlike plane vortices, ring vortices have a curved rotational
axis. For this special vortex type experimental investigations as well as calculations
in the literature suggest that the scaling laws are only partially valid. The main goal
of this work is to clarify how far these similarity or scaling laws are also valid for
the formation of viscid laminar vortex rings. Therefore, the formation process of
laminar vortex rings was investigated numerically using a CFD (computational-fluid-
dynamics) code. The calculations refer to an experimental setup for which detailed
experimental data are available in the literature. In this setup, laminar ring vortices
are generated by ejecting water from a circular tube into a quiescent environment by
means of a piston. First, a case based on a constant piston velocity was investigated.
Comparing calculated and measured data yields a very good agreement. Further
calculations were made when forcing the velocity of the piston by three different
time-dependent functions. The results of these calculations show that the formation
laws for inviscid plane vortices are also valid for the formation process of viscid ring
vortices. This applies to the normalized axial and radial position of the vortex centre
as well as the normalized diameter of the vortex spiral. However, the similarity laws
are valid only if the process is considered in a special frame of reference which moves
in conjunction with the front of the jet and if the starting time of the formation process
with respect to the starting time of the ejection is taken into account. Additionally,
the formation of a ring vortex, which occurs during the start-up process of a free jet
flow, was calculated. The results confirm a dependence for the motion of the jet front,
which is known from analytical considerations and allows some interesting features
to be identified.

1. Introduction
Vortices are ordered structures of fluid motion, which nature prefers over chaos in

many situations (Lugt 1983). Therefore, vortex dynamics is a central theme within
the research field of fluid dynamics. Vortices can be found in nature and technology
and their length scale ranges from the fraction of a millimetre (turbulent eddies) to
thousands of kilometres (planetary atmosphere). The formation of a vortex by roll-up
of a vortex sheet, which separates at the edge of a body, is a phenomenon occurring
in many flow configurations. Some examples are wing-tip vortices, vortices following
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impulsively started flows around wedges and vortices formed by an amount of fluid
pushed through an orifice.

Several authors have calculated the roll-up of an inviscid plane vortex sheet by
applying different analytical methods. Kaden (1931) started his research from the flow
around a semi-infinite plane discontinuity sheet. Continuative analytical calculations
were done by Anton (1939) and Wedemeyer (1961). They theoretically studied the
roll-up of a plane vortex sheet separating from the edge of a flat plate impulsively
set into motion perpendicular to itself. Pullin (1978) calculated the roll-up of a semi-
infinite vortex sheet and the vortex formation downstream of an infinite wedge. From
these investigations it is well known that the evolution of roll-up of a plane inviscid
vortex sheet is a self-similar process and obeys a typical time dependence of the form
∼t2/3.

Unlike planar vortices, ring vortices have a curved rotational axis. They can occur
both as free and as bounded vortices. An example of a bounded ring vortex is the
vortex downstream of a sphere. In the case of small velocity the vortex does not detach.
The energy which is needed to maintain the vortex flow is supplied by the external
flow. In the case of a free ring vortex the kinetic energy is contained within the vortex
and moves with it. Free or unbounded ring vortices can be created by ejecting an
amount of fluid from a circular nozzle. During the vortex life cycle the fluid inside it
exchanges with the ambient fluid. Most of the technical uses of ring vortices are based
on the fact that ring vortices can transport fluid through a resting environment over
long distances. Vortex rings have been studied for more than a century and numerous
theoretical and experimental investigations have been conducted. An overview can be
found in Lugt (1983), Shariff & Leonard (1992) and Saffman (1992). In the following
we restrict our consideration to free laminar vortex rings.

Very detailed experimental data concerning free vortices have originated from
the research group of the Max-Planck-Institut für Strömungsforschung in Germany.
Vortex rings were created by ejecting fluid from a circular nozzle by means of a piston.
Didden (1977, 1979), Liess & Didden (1976), Liess (1978) and Schneider (1978, 1980)
examined all stages of the life cycle of free laminar vortex rings. More experimental
investigations can be found for example in Maxworthy (1972, 1976), Durst & Fuchs
(1974), Sallet & Widmayer (1974), Gühler & Sallet (1979), Glezer (1988), Southerland
et al. (1991) and Fabris & Liepmann (1997).

For the numerical calculation of ring vortices there are mainly two basic approaches:
solving the Navier–Stokes equations and vortex methods. Solving the Navier–Stokes
equations implies the Eulerian frame of reference and applying numerical schemes like
the finite-difference, finite-element or finite-volume method. These procedures demand
substantial computational resources and very accurate numerical schemes to resolve
the large gradients in the flow and mixture field of a vortex ring. One advantage is that
the effect of viscosity is implied in the calculation. Results of ring-vortex calculations
are discussed by James & Madnia (1996), Heeg & Riley (1997), Rosenfeld, Rambod &
Gharib (1998) and Mohseni, Ran & Colonius (2001).

Vortex methods assume that an incompressible flow can be characterized by
regions of concentrated vorticity, embedded in irrotational fluid. Within these regions,
the inviscid motion of the vorticity is given by the local fluid velocity which in
turn is determined kinematically from the vorticity field. Vortex methods simulate
flows of this type by discretizing the vorticity-containing regions and tracking this
discretization in a Lagrangian frame of reference. An overview on vortex methods is
given in Leonard (1980). One benefit of such methods over the Eulerian schemes is
that they require only a relative small number of storage locations. Disadvantages
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concern the treatment of the no-slip condition at walls and of viscous effects. Results
can be found in Chorin & Bernard (1973), Moore (1974), Seno, Kageyama & Ito
(1988), Brady, Leonard & Pullin (1998), Nitsche & Krasny (1994) and Nitsche (1996,
2001).

Seemingly contradictory results have been obtained, both for the predictions and
the measurements of motion and circulation of vortices generated at sharp edges.
Therefore, various explanations have been given as to why the trajectories and
circulations of ring vortices do not follow classical similarity-theory predictions.
Didden (1979) argued that the rotational axis of a ring vortex, in contrast to a plane
vortex, is curved. Subsequently, Auerbach (1987) performed an experimental study of
two-dimensional vortex pair formation at the edge of a rectangular tube. He observed
the same discrepancy between similarity theory and experiment as in the case of vortex
rings. Nitsche et al. (1994) and Nitsche (1996) simulated the experiments performed
by Didden. They developed an axisymmetric vortex sheet model for vortex ring
formation at the edge of a circular tube. The comparison with the experimental data
showed that the model accurately recovers the measured trajectories. Comparable
results were obtained by James & Madnia (1996) and Heeg & Riley (1997) by solving
numerically the Navier–Stokes equations.

The obvious difference between measurement and calculations on the one side
and the analytical calculations on the other side lies in the time-dependence of
the axial position XV of the vortex ring. Both measurements and calculations
resulted in XV ∼ t3/2. However, the similarity laws for plane vortices predict
XV ∼ t2/3.

The main goal of this work is to investigate under which circumstances the
formation process is self-similar and the origin of the difference to the similarity laws
of inviscid plane vortices. In the work, the formation process of viscid laminar ring
vortices was calculated numerically applying a CFD (computational-fluid-dynamics)
code which uses the finite-volume method. First, the experiment performed by Didden
(1979) was simulated. There, the vortices were produced by ejecting water from a pipe
into a resting environment by means of a piston. After a short acceleration process, the
piston reached a constant velocity. Additional CFD calculations using time-dependent
piston velocities have been performed in order to investigate exclusively the formation
process.

The motivation of the calculations was the investigation of the pulsating turbulent
premixed jet flames which appear in connection with self-excited pressure oscillations
in technical combustion systems. Depending on the amplitude and frequency of the
pressure oscillations, large-scale turbulent ring vortices develop near the burner nozzle
and interact with the reaction zone. More details concerning the calculation of pulsed
laminar and turbulent jets and premixed turbulent jet flames, and the formation of
laminar and turbulent vortex rings can be found in Hettel et al. (2004, 2005) and
Hettel (2006).

2. Basics
2.1. Formation of vortex rings

2.1.1. Ring vortices and their life cycle

Ring vortices are vortex flows with a closed rotational axis which is circular.
Figure 1 shows a schematic view of a fully formed, stable, laminar vortex ring of
diameter DV (Liess 1978). The toroidal form of the axis of the vortex core induces a
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Figure 1. Schematic illustration of a stable laminar vortex ring in a vortex-fixed coordinate
system (Liess 1978).

translational velocity UV on itself. The vortex is shown in a frame of reference which
moves together with the vortex. Therefore, the axial velocity far upstream of the
vortex is UV . Additionally some isolines of the stream function (equation (11) below)
are shown. The streamline Ψ = 0 separates the vortex from the ambient fluid. The
fluid within the grey region is circulated around the vortex core. During the vortex life
cycle, there is little exchange between the fluid inside the vortex core, a region with a
typical diameter DV C ≈ 0, 04DV (Liess 1978), and the ambient fluid, while there is a
non-negligible exchange of ambient fluid with the vortex fluid outside the core. Thus,
a ring vortex can transport the fluid inside the core region over long distances. In the
literature many examples can be found where ring vortices were examined for their
ability to transport gaseous fluids over long distances (i.e. exhaust gases, cooling air,
narcotics).

The life cycle of free ring vortices can be divided into the following stages (Liess
1978):

1. vortex formation;
2. separation from the orifice;
3. stable laminar stage;
4. wavy stage;
5. transition stage;
6. turbulent stage;
7. phase of disintegration.
Figure 2 shows a comparison of the calculation and measurement of the trajectory

(radial position versus axial position) of the vortex centre for the first three stages.
Additionally, a calculated mixture field is shown for every phase. The boundary
conditions can be found in § 3. During the formation process, the diameter of the
vortex ring increases until the flow ceases. Subsequently, there is an abrupt contraction
of the ring due to the influence of the nozzle boundary and due to the formation of a
secondary vortex ring which occurs when the piston stops and which moves upstream
into the nozzle (Didden 1979).
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Figure 2. Comparison between calculated and measured (Didden 1979) vortex trajectory.
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Figure 3. (a, b) roll-up of a discontinuity sheet at a wing tip (see Kaden (1931)); (c) roll-up
of a discontinuity sheet at a sharp edge (see Prandtl 1924).

During the separation from the orifice, the vortex reaches the stable laminar stage. In
this stage the translational velocity UV decreases nearly linearly and the axial position
of the centre and the diameter scale with XV ∼ log(t) and DV ∼ t k , respectively, where
k is dependent on the formation conditions (Liess 1978). The result of the calculation
coincides with the measurement during the formation process. During the stage of
separation the calculated radial positions are slightly larger than the measured data;
the difference between the calculated and measured radius of the vortex ring is about
1 mm. The deviation is about 3%. In this paper only the process of vortex formation
is discussed, while extensive calculations, on the phases of separation and the stable
stage of laminar vortex rings, can be found in Hettel (2006).

2.1.2. The roll-up of free discontinuity layers

The investigation of the roll-up of a discontinuity layer is motivated by the theory
of aircraft wings. Downstream of the trailing edge of a wing, a free shear layer
occurs which rolls up at the wing tips (figure 3a, b). This is unwanted, because the
induced drag of a wing with a given lift is minimal if no roll-up occurs. Furthermore,
the separated layer influences the flow of the elevator unit of an aircraft. The same
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phenomenon occurs in all technical applications where similar body shapes are used
(i.e. turbo machinery).

Prandtl (1924) was the first to state, that the roll-up of a planar discontinuity sheet
which appears in the flow around a sharp edge of a body is a self-similar process.
He supposed that the structure of the spiral follows a logarithmic law r = const./ϕn

(r and ϕ are polar coordinates and n is a number) (figure 3c). He also stated that the
form of the underlying similarity laws should exhibit the characteristics of a power
law.

2.1.3. Self-similarity of the formation of vortex structures

Kaden (1931) investigated the roll-up of ring vortices downstream of a wing
(figure 3a, b) with detailed analytical calculations. The starting point was the flow
around a semi-infinite inviscid plane discontinuity sheet (see figure 17a below). This
flow can be obtained using the conformal transformation of a flow along a plane wall.
As a result, Kaden (1931) showed that the velocities at positions which are located in
a polar coordinate system at a constant angle ϕ (‘similar’ positions) are proportional
to 1/

√
r . As the flow directions are constant the ‘similarity’ exists in the whole flow

region. Kaden (1931) made the following considerations: Take two distinct regions of
the flow field, where one region is n times larger than the other region. Then take two
points, each in one of the regions at the same relative (’similar’) position and observe
the changes that occur. As the starting velocities at the two points are proportional to
each other, the movements of the two points are also proportional to each other. The
changes of the shape of the streamlines in each region are similar. But the duration
of the same process will be larger in the bigger region than in the smaller region.
This is because the velocities in the bigger region are smaller by the factor 1/

√
n and

the distances covered are greater by the factor n. The time needed to obtain similar
changes inside the big region as in the small region therefore is larger by the factor
n

√
n = n3/2. As a result, a flow pattern which exists at the time t1 of the process in the

small region occurs at time t2 = n3/2t1 in the region which is n-times larger. Thus, the
times t1 and t2 of the similar flow patterns are related to the length scales r1 and r2

as follows:

t2

t1
= n3/2 =

(
r2

r1

)3/2

or
r2

r1

=

(
t2

t1

)2/3

. (1)

Subsequently Kaden (1931) analytically calculated the time-dependent shape of
the vortex spiral. A comparison with experiments verified the findings. Follow up
analytical calculations were done by Anton (1939) and Wedemeyer (1961). They
theoretically studied the roll-up of a plane vortex sheet, separating from the edge
of a flat plate impulsively set into motion perpendicular to itself. An overview of
the similarity laws for different types of geometries can be found in Saffman (1978).
There, the similarity laws are given in dimensionless form:

X∗ ∼ (t∗)2/3, Y ∗ ∼ (t∗)2/3, D∗
s ∼ (t∗)2/3. (2)

X∗ is the normalized axial distance of the vortex centre and Y ∗ the normalized radial
distance relative to the nozzle edge. D∗

S is the diameter of the inner vortex spiral. All
values are normalized as follows, where Uchar is a characteristic velocity and Lchar a
characteristic length scale

X∗ =
X

Lchar

, Y ∗ =
Y

Lchar

, D∗
s =

Ds

Lchar

, t∗ = t
Uchar

Lchar

. (3)
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Figure 4. Schematic illustration of the formation process.

In non-normalized form the relations given in (2) can be written as

X = C1 (αt)2/3, Y = C2(αt)2/3, Ds = 2
(
C2

4/C2
3

)
(αt)2/3, (4)

C1, C2, C3 and C4 are constants; α depends on the geometry of the problem and
on the flow far from the formation region. First, the scaling laws are developed for
planar vortices considered to be infinitively long and showing no curvature of the
rotational axis (two-dimensional vortices). These scaling laws are only valid as long as
the dimension DS of the vortex spiral is much smaller than the characteristic length
scale Lchar (i.e. nozzle diameter, channel height, length of plate) of the appropriate
geometry.

2.1.4. Start-up procedure of a laminar free jet flow

Another interesting phenomenon is the formation of a ring vortex which occurs
during the start-up procedure of a laminar free jet flow. If a nozzle flow is started
and is held constant over time, a steady-state laminar free jet flow will arise after an
infinitely long time span. At the beginning of the start-up procedure a vortex ring
occurs at the nozzle edge and moves downstream together with the front of the jet.
Figure 4 shows the shape of the fluid emanating from the nozzle for two different
times t1 < t2. The intersection of the line which separates nozzle fluid from ambient
fluid with the symmetry axis is called the ‘front position’ XF of the jet. This definition
is also valid for the formation process of an isolated vortex ring and will be used to
discuss the similarity laws.

Referring to Prandtl (1924) (cited by Wille 1952) the velocity UF of the front can
be determined easily. First, the process is examined in a fixed frame of reference
(figure 5a). The front position XF moves with the velocity UF in the positive x-
direction. Thus, the velocity of the jet coming from the left is Unozzle. In figure 5b the
process is shown in a coordinate system which moves with the jet front. Now, the
front position is fixed at the stagnation point. The velocity of the jet flowing from
the left is then Unozzle − UF . On the basis of the law of Bernoulli, we find that at the
stagnation point the relation

(Unozzle − UF )2 = U 2
F (5)
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Figure 5. Conditions at the jet front; (a) fixed coordinate system;
(b) moving coordinate system.

is valid, leading to

UF

Unozzle

= 0.5. (6)

The ratio of front and jet velocities becomes 0.5. Wille (1952) performed experimental
investigations and found ratios from 0.55 to 0.8, depending on the Reynolds number.
However, the measurements of the flow velocity were not very exact. The relation
given in (6) was confirmed by Liess (1978). He showed that the translational velocity
of a single ring vortex increases with the volume of fluid ejected. The longer the
ejection time is, the closer the translational velocity converges towards an asymptote
given by half of the nozzle exit velocity. Therefore, a continuous changeover of the
translational velocity exists from a single isolated vortex to a vortex which is bounded
at a jet front.

2.2. Numerics

2.2.1. The CFD code CATS-2D

For the calculations we applied the CFD (computational fluid dynamics) code
CATS-2D (Combustion and Turbulence Simulator 2-dimensional). This code was
developed at the Engler-Bunte-Institute based on the TEACH-code (Gosman &
Ideriah 1976) and uses the finite-volume method. In it, the Navier–Stokes equations
in axisymmetrical form are numerically solved on a staggered two-dimensional grid
using a primitive variable formulation. For pressure–velocity coupling the CFD code
uses the SIMPLEC algorithm and the Tri-Diagonal-Matrix-Algorithm for solving.
The details of the numerical model are standard (Patankar 1980). For discretization
of the convective terms of the transport equations the bounded high-resolution MLU
(Monotonized Linear Upwind) scheme by Noll (1992) was implemented. It exhibits
second-order accuracy. The temporal discretization is handled by an implicit first-
order time-stepping.

For the analysis of the convergence of a CFD calculation it is usual to sum the
residual of each cell and to normalize the sum with a global value, i.e. the mass
flow entering the calculation domain. This procedure is not helpful if the mass flow
changes in time or is zero (in our case after the piston has stopped). Therefore we
used a different criterion for the convergence analysis (Hirsch 1995). The starting
point is the general form of the transport equation (Patankar 1980):

∂(�Φ)

∂t
+ ∇(�uΦ) − ∇(Γ ∇Φ) = SΦ, (7)
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where Φ is the transported quantity, Γ the diffusion coefficient and SΦ the source
term. The discretized equation for the cell P for fully implicit time discretization
(new= new time step, old= old time step) is (Patankar 1980)

aP (ΦP )new =
∑
nb

aab(Φnb)
new + SΦ,P (8)

with

aP =
∑
nb

anb +
�old

P

�t
VP − (SΦ,P,lin.)

new , SΦ,P =

(
(SΦ,P,const )

new +
(�Φ)old

P

�t

)
VP .

The coefficients anb contain the convection and diffusion fluxes of the cells in the
neighbourhood of cell P with the volume VP . SΦ,P,const . is the constant part and
SΦ,P,lin. the linearized part of the source term SΦ . The residual of equation (8) for cell
P for a certain iteration k is

(ResP )k =
∑
nb

anb(Φnb)
k − aP (ΦP )k + (SΦ,P )k. (9)

A relative error for this equation can be calculated based on the consideration that
the right-hand side equals zero for convergence. In this case the term with the largest
absolute value is balanced with the sum of the other terms. This means that this
term is characteristic for the equation and can be used to normalize the residual. An
applicable average residual results from the summation of the individual terms over
all cell volumes:

Res =

∑
i

|(Res i)
k|

∑
i

(max(|
∑
nb

anb(Φnb)k|, |aP (Φi)k|, |(SΦ,i)k|)) � 10−5. (10)

At the beginning of the calculations the residual Res has typical values of order
of magnitude of 1. The convergence criterion was set to 10−5 (§ 2.2.2). This relates
directly to the calculation accuracy of a computer working with real numbers on a
4-byte description, which is about six decades for the addition.

2.2.2. Analysis of computational accuracy

To analyse the quality of the numerical solution, the influence of grid size, time step
and residual limit on the results was investigated. Figure 6 shows the trajectory of
the vortex centre during the formation stage (see figure 2) using different numerical
parameters. The boundary conditions can be found in § 3.

Part (a) of figure 6 shows the influence of the grid size for a fixed time step and
residual limit. The results using the grids of 150 × 90 and 300 × 180 nodes coincide.
The grid with 75 × 45 nodes shows a deviation of the calculated values. Additionally,
the values are not as smooth as for the two finer grids. The algorithm for searching for
the position of the vortex centre indicates in which cell it is to be found (see § 3.1.3).
However, the exact position within a finite volume remains unknown. Therefore, the
cell index and the appropriate position remains constant during some time steps and
then jumps to the next cell. The result using the coarsest grid is still reasonably
satisfactory. The grid lines in the formation region of the vortex are denser than in
the far region. Obviously the density in the formation region is sufficient to yield an
approximate solution even for the coarsest grid.

The influence of the time step for the 300 × 180 grid is shown in part (b) of
figure 6. For a time step of �t = 0.001s and smaller the results coincide. A time step
of �t = 0.035s leads to a deviation of the results towards larger radial values.
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Figure 6. Influence of numerical parameters on the trajectory of the vortex centre:
(a) grid size, (b) time step, (c) residual limit, (d) calculation versus measurement.

Part (c) of figure 6 shows the influence of the residual limit for the grid with
300 × 180 cells. For Res = 10−5 and smaller the results coincide. A very small deviation
can be found for a residual limit of Res = 10−4. This result demonstrates, that the
formulation of the residual described in § 2.2.1 ensures an accurate solution even for
values of the limit of the order of 10−4.

The results show, that using a grid with 300 × 180 cells, a time step of �t = 0.001 s
and a residual limit of Res = 10−5 guarantees solutions which are independent of these
numerical parameters. We used these values of the parameters to obtain all the results
shown below. A comparison between the calculation and the measurement of Didden
(1979) is shown in part (d) of figure 6. The correspondence between calculation and
measurement is nearly perfect.

3. Calculation of laminar vortex rings
3.1. Approach

3.1.1. Investigated system

The system used to calculate the vortex formation, was the same as used by Didden
(1979) for his experimental investigations (figure 7). It consists of a circular tube
immersed in a water-filled tank. The separated flow is produced by ejecting water
from the tube into the quiescent environment by means of a piston. After a short
acceleration process, the piston reaches a constant velocity. Lpiston(t) denotes the time-
dependent position of the piston. Due to the viscosity of the fluid, a boundary layer
grows at the inner wall of the pipe. The boundary layer separates at the nozzle edge,
rolls up and forms a vortex ring. The circulation of the vortex ring originates from
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Figure 7. Geometry of the experimental system and definition of the calculation domain,
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Figure 8. A schematic view of the vortex spiral. XV and RV are the coordinates of the vortex
centre. Ds is the diameter of the vortex spiral and UV is the translational velocity of the vortex.
The origin of the cylindrical coordinate system is located at the inner nozzle edge.

the detached boundary layer. After the formation stage, the vortex separates from the
nozzle and reaches the stable laminar stage.

The grey region in figure 7 represents the size and the position of the calculation
domain. For all results shown below, we used the grid with 300 × 180 cells in the axial
and radial directions, respectively (see § 2.2.2). On the symmetry axis of the domain,
symmetric boundary conditions were used. All other boundaries were defined as open
boundaries, where inflow or outflow is possible. To simulate the motion of the piston,
the axial velocity at the inlet boundary of the calculation domain was set equal to
the piston velocity by means of a plug-flow profile.

Figure 8 shows a schematic view of the ring vortex, the coordinates of the vortex
centre (XV , RV ), the diameter of the vortex spiral DS and the direction of the
translational velocity UV . The origin of the cylindrical coordinate system is located
at the inner nozzle edge.

The following properties for the water were used: � = 1000 kgm−3, ν = 10−3 m2 s−1.
To distinguish between the fluid emanating from the nozzle and the ambient fluid,



46 M. Hettel, F. Wetzel, P. Habisreuther and H. Bockhorn

0.010

0

–0.010

r 
(m

)

r 
(m

)

0 0.01 0.02 0.03 0.005 0.010 0.015 0.020
x (m) x (m)

1.0

(a) (b)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0.015

0.010

0.005

0

Figure 9. Normalised concentration of scalar f ; (b) is an enlargment of (a).

an additional transport equation for the scalar quantity f was solved. The molecular
diffusion coefficient Γdiff = ν/Sc of the additional transport equation was determined
with a Schmidt number of Sc =400.

3.1.2. The diameter of the vortex spiral

In the experiments by Didden (1979) the vortex was visualized by injecting dye into
the pipe through a narrow slot near the nozzle edge. Photos of the dyed vortex rings
show a distinct structure which could be analysed to derive the spiral diameter. In
the calculation a different approach was used. At the beginning of the calculation the
value of the additional scalar f was set to unity in the region of the flow inside the
tube. The diameter of the vortex spiral was obtained by analysing the mixture field
of the scalar f (figure 9a).

Thereby, the maximal and minimal radius of the vortex spiral at the axial position
of the vortex centre XV was identified. Thus, the diameter of the vortex spiral DS

is determined by the difference between these two radial positions (see figure 8). To
obtain an impression of the spatial resolution, figure 9(b) shows an enlargement of a
section of 9(a) together with the computational grid (300 × 180 cells).

3.1.3. Detection of the vortex centre

The vortex centre was identified by detecting the maximum of the stream function.
Therefore, an algorithm was implemented in the CFD code, which analyses the
distribution of the stream function Ψ and the spatial position of its maximum for
each time step. For an axisymmetrical flow the stream function is defined as follows:

Ψ (x, r) = 2π

∫ r

0

u(x, r)r d r − 2πr

∫ x

0

v(x, r) dx. (11)

The position of the maximum of the stream function for the time step shown in
figure 9(b) is marked by a white cross.

A second characteristic of vortices can be extracted from the Navier–Stokes
equations transformed into a cylindrical coordinate system. For a steady-state plane
vortex the Navier–Stokes equation in the radial direction yields

w2

r
=

1

�

∂p

∂r
. (12)
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The gradient of static pressure is positive in the whole flow region. Towards the
rotational axis the pressure decreases, reaching its minimum at the vortex centre. The
position of the minimum of the static pressure for the time step shown in figure 9(b) is
marked by a white circle. For ring vortices, which have a small translational velocity
UV , the positions of the maximum of the stream function and the minimum of the
static pressure nearly coincide. With regard to the analysis here, it was insignificant
which of the two positions was used. But the faster a ring vortex moves in the axial
direction the more the two positions differ. This should be kept in mind, especially
while analysing turbulent vortex rings (Hettel et al. 2004, 2005; Hettel 2006).

3.1.4. Calculation of circulation

The change of circulation dΓ within the region x > 0 during the time interval dt

is given by dΓ =
∫

A
ω dA, where ω = (∂v/∂x − ∂u/∂r) is the vorticity. The integration

region A in the (x, r)-plane contains all the fluid that convects through the plane
x = 0 during the interval dt (Didden 1979). Thus, the total circulation shedding rate
is

dΓt

dt
=

∫ ∞

0

ω(x = 0, r, t)u(x = 0, r, t) dr. (13)

The total shedding rate is the sum of the circulation shed inside and outside the tube:

dΓt

dt
=

dΓi

dt
+

dΓo

dt
=

∫ ri

0

ωu dr +

∫ ∞

ro

ωu dr, (14)

where ri and ro are the inner and the outer radii of the nozzle, respectively. The shed
circulation is obtained from time integration of the shedding rates:

Γt = Γi + Γo =

∫ t

0

dΓi

dt
dt +

∫ t

0

dΓo

dt
dt . (15)

3.2. Results and discussion

3.2.1. Calculations with a time-limited constant velocity

In this section results of the calculation referring to an experiment performed by
Didden (1979) are discussed. The measured time-dependent position Lpiston(t) of the
piston was fitted and used in the calculations as the boundary value of the axial velo-
city at the inlet boundary (x = −0.115 m) of the calculation domain (figure 7). After an
acceleration phase of 0.3 s the piston velocity remains constant at Upiston = 0.046 m s−1.
Overall, the piston moves a dimensionless distance of Lpiston,max/Dnozzle = 1.4.

The coordinates of the vortex centre (XV (t), RV (t)) and the diameter of the vortex
spiral DS(t) are normalized by the nozzle diameter Dnozzle = 0.05 m. The normalized
time axis is defined using the position of the piston and the nozzle diameter. Although
defined by two distances, it can be considered as a ‘normalized time’ (see § 3.2.2). Thus

X∗
V (t) =

XV (t)

Dnozzle

, R∗
V (t) =

RV (t)

Dnozzle

, D∗
S(t) =

DS(t)

Dnozzle

, t∗ =
Lpiston(t)

Dnozzle

. (16)

Both abscissa and ordinate are shown in logarithmic scales to allow a comparison
with the power laws of the similarity relations.

Axial velocity at the nozzle outlet plane

Figure 10 shows radial slices of the axial velocity at the nozzle tube outlet plane
(x = 0 m) for different times (t = 0.1, 0.3, 1.6 s) after the beginning of the piston
movement. The wall thickness of the nozzle tube is 0.5 mm. The inner edge of
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Figure 10. Comparison of measured and calculated axial velocity at the nozzle outlet plane.

the nozzle tube is positioned at ri = 0.025 m, the outer edge at ro = 0.0255 m. The
calculated and measured velocities correspond very well for each time point. At the
beginning of the ejection, a flow around the nozzle edge develops. Near to the inner
wall, the fluid moves faster than at the symmetry axis. At the time of 0.3 s, the
velocity near the inner wall is larger than the piston velocity of Upiston = 0.046 m s−1.
Downstream of the nozzle edge, the fluid moves radially outwards which leads to
a backflow near to the outer wall of the tube. This behaviour corresponds to the
beginning of vortex formation. As time proceeds the axial velocity near the inner
wall decreases where the velocity in the interior region increases. The velocity profile
reorganites towards the steady-state hyperbolical distribution, but this process has
not finished at the maximum time calculated. As the vortex moves away from the
nozzle edge, the backflow outside the nozzle vanishes and a boundary layer arises at
the outer wall of the tube.

The calculated velocity profiles match better with the measurements than the
results from the finite-difference calculations of Heeg & Riley (1997). However, the
velocity profiles computed from Nitsche & Krasny (1994) differ considerably from the
measurements. The vortex-blob model used is not able to satisfy the no-slip condition
at the tube wall.

Axial position of the vortex centre

Figure 11 shows the normalized axial position of the vortex centre X∗
V versus

the normalized time t∗. The result of the calculation coincides with the result
obtained by the measurement. Both curves show a dependence which is proportional
to X∗

V ∼ (t∗)3/2. Nitsche & Krasny (1994), James & Madnia (1996) and Heeg
& Riley (1997) found the same characteristics in their calculations. But this
behaviour contradicts the similarity law, which predicts a dependence proportional to
X∗

V ∼ (t∗)2/3. The discussion of this finding in § 3.2.2 will show that this discrepancy can
be explained by the fact that in each system (vortex formation behind a circular nozzle
and roll-up of a semi-infinite free vortex sheet) a different frame of reference is used.

Radial position of the vortex centre

Figure 12 shows the normalized radial position of the vortex centre R∗
V versus

normalized time t∗. The results of the calculation coincides with the result obtained
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by the measurements. The dependence of the radial position predicted by the similarity
law R∗

V ∼ (t∗)2/3 can be reproduced by both calculation and experiment. Nitsche &
Krasny (1994), James & Madnia (1996) and Heeg & Riley (1997) found the same
characteristics in their calculations.

Diameter of the vortex spiral

Figure 13 shows the normalized diameter of the vortex spiral D∗
S versus normalized

time t∗. The result of the calculation confirms the similarity law, which predicts the
dependence D∗

S ∼ (t∗)2/3. But this result contradicts the result of the measurements,
where the dependence D∗

S ∼ (t∗)1 was found. Possibly, this discrepancy between the
result obtained by Didden (1979) and the similarity law is due to different definitions of
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the diameter of the vortex spiral. The diameter used by Anton (1939) and Wedemeyer
(1961) for the analytical derivation of the similarity laws is clearly defined. It is
the diameter of the region of the vortex where the convolutions of the spiral are
approximately circular. This virtual diameter is an idealized approximation, needed
for the solution of the analytical problem. The definition of the diameter of the
vortex spiral used in this work can be found in figure 8. Clearly, the results using this
definition are the same as the results predicted by the similarity law. The definition
of the spiral diameter used by Didden (1979) remains questionable. However, there
is a second reason to doubt the diameter measured by Didden (1979). As explained
above, the formation process of the ring vortex is self-similar. This similarity is not
only valid for the vortex centre, but also for all radial positions. As a consequence,
the similarity law is also valid for the radial distance between two ‘similar’ radial
positions and therefore also for the spiral diameter.

Circulation

Figure 14 shows a comparison of calculated and measured circulation which is
convected through the plane x = 0. The positive circulation Γi shed from the inner
wall and the negative circulation Γo shed from the outer wall of the tube both increase
with time. As the vorticity flux decreases with time, the growth of the vorticity reduces
(Didden 1979). If all vortical fluid that has been transported into the region x > 0
at the end of the stroke is rolled up into the vortex and if dissipation is neglected,
the total circulation of the ring vortex is Γt (t = 1.6 s)= Γi + Γo (see equation (15)).
The total circulation Γt is considerably diminished by the flux of negative vorticity
Γo which is produced at the boundary layer at the outer wall of the tube. Although
the calculation predicts the characteristics of the measurements very well, the total
amount of the inner and outer circulation is underestimated in each case. In contrast
Heeg & Riley (1997) and Nitsche & Krasny (1994) both found an overestimation of
the calculation versus the measurement. James & Riley (1996) got a better agreement,
but, their results are normalized with the values at the end of the piston stroke.
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Figure 14. Calculated and measured circulation versus time.

3.2.2. Calculations with time-dependent velocities

In this section the influence of the piston movement on vortex formation was
investigated using three different time-dependent functions for the velocity of the
piston:

linear function: Upiston(t) = Ūpiston

2t

tmax

,

sine function: Upiston(t) = Ūpiston

(
1 + sin

[
2π

t

tmax

− π

2

])
,

power function: Upiston(t) = Ūpiston

1

0.78568
t2.6.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(17)

As before, the velocity of the piston was used as the velocity of the fluid at the
inlet boundary (figure 7). The time-averaged velocity Ūpiston = 0.046 m s−1 was the
same as the constant velocity used in the calculations given in § 3.2.1. In figure 15(a)
the time-dependent velocity Upiston(t) is shown, and in part (b) the position of the
piston Lpiston(t). Both quantities are plotted versus the physical time. The definitions
of the velocity functions ensure that the ejected volume was the same in all cases. The
maximum position of the piston was Lpiston, max/Dnozzle = 1.4, and the maximum time
of ejection was tmax = Lpiston, max/Ūpiston = 1.522 s for all calculations.

Figure 15 (c) shows the total circulation shed. The time-dependent characteristics
of the curves for the linear function and the power function are qualitatively the
same. However, the curve of the sine function differs. For most of the ejection time,
the circulation using the sine function is larger than for the other two functions. Only
at the end of the ejection stroke is the total circulation using the power function
largest. The translational velocity of a fully formed stable vortex is proportional to
the circulation UV ∼ ΓV (Saffmann 1978). If all vortical fluid is accumulated in the
vortex, it can be expected that the stable laminar vortex which is formed using the
power function exhibits the largest translational velocity.

Figure 15 (d) shows the trajectories of the vortex centre during the formation
process. Again, the curves for the linear and power functions are qualitatively
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Figure 15. Calculations with variation of piston velocity function: (a) velocity of piston
Upiston; (b) position of piston Lpiston; (c) total circulation Γt ; (d) vortex trajectory; (e) velocity
of vortex centre UV ; (f ) velocity of jet front UF .

comparable. Surprisingly, the maximum axial position the vortex reaches for the
sine function is nearly twice the maximal axial positions of the two other velocity
functions. This behaviour can be deduced from figure 15(e) and (f ), where the axial
velocity of the vortex centre UV and the axial velocity of the jet front UF are shown.
For both the linear function and the power function, the piston accelerates during the
whole ejection time (see part a). Correspondingly both velocities UV and UF increase.
The acceleration of the piston is largest for the sine function (see part a). It is the only
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velocity function which exhibits a deceleration phase. At the end of the stroke, the
piston velocity is zero. The respective velocities UV and UF both exhibit a deceleration
phase which is shorter in time and smaller in magnitude than the acceleration phase.
The momentum which is imparted to the fluid at the beginning of the formation
process is only partly discharged at the end of the formation process. Therefore, the
vortex moves over a larger axial distance using the sine function in contrast using the
other two velocity functions (see part d). James & Madnia (1996) also report that the
impulse may play a significant role during the formation process.

All quantities shown in figure 16(a–f ) are normalized with the nozzle diameter
(Dnozzle = 0.05 m). Part (a) shows the normalized position of the piston L∗

piston versus
the normalized time t∗. From the definition given in equation (16), these two variables
are equivalent. Therefore, the linear function with an exponent of one fits perfectly.

The definition of the time variable t∗∗ of the abscissa for the quantities shown in
figure 16(b–f ) is different to the time variable t∗ used before (equation (16)). This
is explained as follows. Referring to Kaden (1931), the formation laws describe a
‘self-similar enlargement of an existing flow structure’. As the acceleration is different
for each of the three velocity functions, the start of the formation of a ring vortex
takes place at different points in time after the beginning of the ejection. The time t∗∗

primarily starts with the beginning of the formation process. As above, t∗ denotes the
normalized time counted from the beginning of ejection. t0

∗ denotes the normalized
physical time when a vortex structure can be detected. Thus, t∗∗ denotes the relative
time with respect to the time at which the formation process starts:

t∗∗ = t∗ − t∗
0 =

Lpiston(t) − Lpiston(t0)

Dnozzle

. (18)

The stronger the acceleration of the piston, the earlier the formation process begins.
As above, the time t∗∗ is expressed as a ‘dimensionless distance’. In contrast to the
case where the piston velocity is constant, the dependence between dimensionless time
and dimensionless distance is nonlinear. For clarity and for the comparison with the
scaling laws it will furthermore be called a ‘dimensionless time’. The reason, why it
is necessary to use definition (18) is the following. If using a piston velocity, which
changes in time, the process of formation and also the shape of the vortex depends on
the amount of fluid ejected and not on the physical time. Therefore, the position of
the piston is the dominating relevant parameter. Using the time-dependent functions
for the piston velocity the physical time is ‘stretched’ and ‘compressed’ compared to
the process with a constant piston velocity, which was examined in § 3.2.1.

Figure 16(b) shows the normalized distance between the actual axial position of
the jet front and the axial position of the front at the beginning of vortex formation
(XF − XF,0)

∗. The calculated data matches perfectly with a linear function with
exponent 0.95. Nitsche (2001) found a linear dependence with an exponent of one for
the axial position of the jet front.

The curve of the normalized radial coordinate of vortex centre R∗
V (figure 16c) and

the curve of the normalized diameter of the vortex spiral D∗
S (figure 16d) is almost

the same for all velocity functions. Both quantities exhibit a time dependence which
is proportional to (t∗∗)2/3.

In contrast, the curve of the normalized axial coordinate X∗
V (figure 16e) is

proportional to (t∗∗)3/2 for all velocity functions considered. This behaviour is the
same as given by the calculations and measurements of the experiments performed
by Didden (1979) (see § 3.2.1). Didden (1979) explained the difference between the
power (2/3 in the similarity law and 3/2 in the measurements) by the enlargement of
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Figure 16. Calculations with variation of piston velocity function; (a) normalized position
of piston L∗
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∗; (c) normalized radial position of vortex R∗

V ;
(d) normalized diameter of vortex spiral D∗

S; (e) normalized axial position of vortex X∗
V ; (f )

normalized distance between axial positions of jet front and vortex centre (XF − XV )∗.

the translational velocity UV of the vortex centre due to the curvature of the vortex
tube. In the following we show that the difference arises due to the use of different
coordinate systems in both flow systems.

The analytical investigations of the formation of plane vortices, developing from
the roll-up of a discontinuity plane and leading to the similarity laws (Kaden 1931)
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Figure 17. (a) Roll-up of a semi-infinite plane discontinuity sheet (see Kaden 1931);
(b) roll-up of a circular vortex sheet downstream of a nozzle edge.

and the formation process which takes place downstream of a circular nozzle (Didden
1979 and this work) exhibit a translational velocity UV of different signs (figure 17).
The plane vortex investigated by Kaden (1931) moves in the negative x-direction.
For the formation downstream of the nozzle edge the vortex moves inside a velocity
field, which is influenced by the nozzle flow. During the formation process the vortex
therefore moves in the positive x-direction. This was also discovered by Nitsche
(1996). Consequently, this finding was considered during the analysis of the results of
our calculations.

As shown in § 2.1.4 an axial position of the jet front XF can be defined. The
fluid which is driven radially outwards from the jet and entrained into the vortex
has an axial velocity. Therefore, the movement of XF in time can be considered
as an additional velocity which is superimposed to the movement of the vortex
which originates from the roll-up process. As can be seen in figure 4, the distance
between the front position XF and the vortex centre XV increases over time during
the formation process. With respect to the front position XF the vortex moves in
the negative x-direction. Now, the sign of the velocity UV is the same as in the
case considered by Kaden (1931). This relative distance normalized with the nozzle
diameter (XF − XV )∗ is shown in figure 16(f ). As can be seen, the relative position
exhibits a time dependence which is predicted by the similarity law (t∗∗)2/3.

For the conditions used in this work, the formation laws derived for plane inviscid
vortices are found to be valid also for the formation of viscous ring vortices. Inversely,
it can be stated that the curvature of the vortex tube has a negligible influence on the
formation process of the ring vortex.

The correspondence of the results of the calculations and the similarity laws
additionally verifies that the definition of the ‘dimensionless time’ t∗∗, given above,
is the appropriate parameter to express the progress of vortex formation. Accurately
described, the ‘dimensionless time’ is a ‘dimensionless position’. This shows that
the position of the piston and not the physical time is the relevant parameter for
describing the vortex formation using the time-dependent velocity of the piston.
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Figure 18. Axial positions of jet front and vortex centre versus time.

3.2.3. Calculations with a permanent velocity

The start-up procedure of a laminar jet described in § 2.1.4 was investigated
numerically using the system described in § 3.1.1 (figure 7). In this case, the velocity
at the inlet boundary was set to Upiston = 0.046 m s−1 and held constant in time. The
calculation was performed up to a physical time of 9 s.

In figure 18 the motion of distinct axial positions over time is shown. It can be seen
that the axial position of the jet front XF reaches a constant velocity of half of the
nozzle exit velocity after approximately 1 s. This verifies the theory, which predicts a
factor of 0.5 (see § 2.1.4). The change of the axial position of the vortex centre XV

shows a distinct acceleration phase. After a time of approximately 4 s, a translational
velocity is reached which is nearly the same as the velocity UF of the jet front. The
vortex is quasi-fixed to the jet front and moves downstream with it.

As can be seen in figure 19, both the radial position of the vortex centre RV and
the diameter of the vortex spiral DS increase with time. This is because the volume
VV of the vortex increases.

Starting from equation (6) we can derive more dependences. As the jet front moves
with half of the velocity of the outflow, the volume flux of fluid emanating from the
jet and flowing radially outwards into the vortex V̇V, from jet is half of the volume flux
through the nozzle:

V̇V, from jet =
1

2
V̇nozzle =

1

2
Upistonπ

Dnozzle
2

4
= 4.52 × 10−5 m3 s−1. (19)

During the roll-up process, the vortex entrains ambient fluid into the spiral structure
(see figure 9). An analysis of the vortex structure for late time justifies the assumption
that the volume flux of fluid entrainment is small. Let us further assume that the vortex
has a perfect toroidal geometry inside the region which is defined by the diameter of
the vortex spiral DS . The volume of a torus is defined by V =(π2/2)D2

SRV . Thus, the
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time-dependent volume of the vortex can be expressed as

VV (t) =
π2

2
D2

S(t)RV (t), (20)

and should be proportional to the time t . VV (t) is plotted in figure 19 (square symbols).
The result shows that our assumptions are confirmed very well by the calculation.
The volume of the vortex VV , calculated by equation (20), increases linearly in time.

4. Summary
Analytical investigations by several authors (Kaden 1931; Anton 1939; Wedemeyer

1961; Pullin 1978) show that there are similarity laws for the roll-up process of
inviscid plane vortex sheets. These laws describe the time-dependent axial and lateral
position XV and YV of the vortex centre, respectively, as well as the diameter of the
vortex spiral DS . The main goal of this work was to clarify how far these similarity
or scaling laws are valid for the formation of free viscid vortex rings.

The formation process of laminar vortex rings has been investigated numerically
using a CFD (computational-fluid-dynamics) code. The calculations were based on a
geometry which was investigated experimentally by Didden (1979). Thereby, laminar
ring vortices are generated by ejecting an amount of water using a piston from a
circular nozzle into a quiescent environment.

A comparison between calculated and measured data shows a very good agreement
for the time-dependent axial and radial positions (XV , RV ) of the vortex centre as
well as the velocity field at the nozzle outlet plane. The calculated and measured
data differ with respect to the diameter DS of the vortex spiral. It was shown that
the difference must originate from a different definition of the spiral diameter in
the experiment and in the calculations. The definition of the diameter used in the
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calculations is the same as used in the derivation of the similarity laws. This can be
seen in the correspondence of the time dependence of the calculated diameter DS and
the associated similarity law.

Further calculations were made, forcing the velocity of the piston by three different
time-dependent functions. The results of the calculations show that the formation
laws for plane vortices are also valid for the normalized axial and radial position X∗

V

and R∗
V , respectively, as well as for the normalized diameter of the vortex spiral D∗

S

of ring vortices. These dependences can be written as (Saffman 1978)

X∗
V ∼ (t∗∗)2/3, R∗

V ∼ (t∗∗)2/3, D∗
s ∼ (t∗∗)2/3.

Furthermore, it was found that the similarity laws are valid only if the starting time
of the formation process with respect to the starting time of the ejection is taken into
account, leading to the normalized time t∗∗. More accurately, this dimensionless time
is a dimensionless distance, because for a non-constant piston velocity the position of
the piston is the relevant parameter, not the physical time. Consequently, the process
has to be considered in a special frame of reference which moves with the front of
the jet.

Additionally, the start-up process of a free jet flow was calculated. It is known from
analytical considerations that the front of the jet moves with half of the velocity of
the nozzle outflow. The results of the calculations confirm this dependence. After a
phase of acceleration, the vortex moves downstream with the same velocity as the jet
front. The time-dependent volume of the vortex spiral is proportional to the time t

and can be expressed as

VV (t) =
π2

2
D2

S(t)RV (t).
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Aerodynamik, Herausgegeben v. Th. v. Kármán u. T. Levi-Civita. 19–34, Berlin.

Pullin, D. I. 1978 The large-scale structure of unsteady self-similar rolled-up vortex sheets. J.
Fluid Mech. 88, 401–430.

Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar
vortex rings. J. Fluid Mech 376, 292–318.

Saffman, P. G. 1978 The number of waves on unstable vortex rings. J. Fluid Mech. 84, 625–639.

Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.

Sallet, D. W. & Widmayer, R. S. 1974 An experimental Investigation of laminar and turbulent
vortex rings in air. Z. Flugwiss. 22, 201–215.

Schneider, E. 1978 Werden, Bestehen, Instabilität, Regeneration, Vergehen eines Ringwirbels.
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